From: James Ramsey

To: Microsoft ATR
Date: 12/27/01 9:13pm
Subject: Apparent misperceptions about security

One of the sections from the Final Judgment, II11.J.1,
has already been noted controversial because it is a
possible loophole. However, aside from that problem,
it also appears to rest on a false understanding of
how to make secure software. From I11.J.1:

"No provision of this Final Judgment shall ...

[r]equire Microsoft to document, disclose or license

to third parties: (a) portions of APIs or

Documentation or portions or layers of Communications
Protocols the disclosure of which would compromise the
security of a particular installation or group of
installations of anti-piracy, anti-virus, software
licensing, digital rights management, encryption or
authentication systems, including without limitation,
keys, authorization tokens or enforcement criteria; or
(b) any API, interface or other information related to
any Microsoft product if lawfully directed not to do

so by a governmental agency of competent
jurisdiction."”

The above appears to be built on the idea of "security
by obscurity," where security is dependent upon hiding
the implementation used to secure something. In the
physical world, this would be analogous to making the
mechanisms of a lock or safe a trade secret. In the
computer realm, this would mean keeping secret the
mathematics or algorithms, source code, protocols,
etc. of cryptographic software. While this appears to
make sense on its face, it has long been discredited

by those who deal with computer security, such as
Bruce Schneier, author of "Applied Cryptography" and
"Secrets and Lies," a book about dealing with
real-world security problems. (His business's website,
by the way, is http://www.counterpane.com.) In
particular, the core problem with "security by
obscurity" is that it is fragile, that is, the

security implementation is not necessarily obscure to
the ones who may attempt to break it. Industrial spies
or hackers/crackers have the tools and expertise to
discover the source code or algorithms of a piece of
security software. Even those who are not "black hats"
may break proprietary, secret algorithms with relative
ease. (See

MTC-00004951 0001



http://www.counterpane.com/crypto-gram-9902.html#snakeoil)

Much of strong cryptographic and security software,
rather than relying on the secrecy of the algorithm or
implementation, relies on public algorithms and often
public implementations. What is kept secret is a long
number, a key, used in combination with the algorithm,
and knowledge of the algorithm is useless without the
key. Examples of public cryptographic algorithms are

the government standards DES (recently "retired") and
AES (DES's replacement), and RSA, the algorithm behind
SSL, the protocol used for secure Internet

transactions. Examples of secure software with public
implementations are OpenBSD, OpenSSH, OpenSSL, and
PGP.

The point of this discussion of "security by

obscurity" is that Microsoft (MS) should have no need
to hide the protocols and APIs used for security.
Unless their software has a fragile security
implementation, disclosing the protocols and APIs
should do no damage or compromise security.

The only possible exception to the above points is

digital rights management (DRM), which is inherently
fragile. (See
http://www.counterpane.com/crypto-gram-0105.html#3)
However, DRM is more designed to deter would-be casual
copyright infringers, who lack technical knowledge,
rather than mass-scale pirating operations of the kind

one sees in Asia. The documentation of DRM APIs and
protocols would be of little use to those whom DRM is
designed to thwart.

In general, there is no good technical reason to allow
Microsoft to have any private APIs.

-- I am a fool for Christ. Mostly I am a fool. --

Do You Yahoo!?
Send your FREE holiday greetings online!
http://greetings.yahoo.com

MTC-00004951 0002



